
SANDIA REPORT
SAND2017-13271
Unlimited Release
Printed October 2017

The use of multiwavelets for uncertainty
estimation in seismic surface wave
dispersion

Christian Poppeliers

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.



Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2



SAND2017-13271
Unlimited Release

Printed October 2017

The use of multiwavelets for uncertainty estimation in
seismic surface wave dispersion

Christian Poppeliers
Geophysics Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-9999
cpoppel@sandia.gov

Abstract

This report describes a new single-station analysis method to estimate the dispersion and uncer-
tainty of seismic surface waves using the multiwavelet transform. Typically, when estimating the
dispersion of a surface wave using only a single seismic station, the seismogram is decomposed
into a series of narrow-band realizations using a bank of narrow-band filters. By then enveloping
and normalizing the filtered seismograms and identifying the maximum power as a function of
frequency, the group velocity can be estimated if the source-receiver distance is known. However,
using the filter bank method, there is no robust way to estimate uncertainty. In this report, I in-
troduce a new method of estimating the group velocity that includes an estimate of uncertainty.
The method is similar to the conventional filter bank method, but uses a class of functions, called
Slepian wavelets, to compute a series of wavelet transforms of the data. Each wavelet transform
is mathematically similar to a filter bank, however, the time-frequency tradeoff is optimized. By
taking multiple wavelet transforms, I form a population of dispersion estimates from which stan-
dard statistical methods can be used to estimate uncertainty. I demonstrate the utility of this new
method by applying it to synthetic data as well as ambient-noise surface-wave cross-correlelograms
recorded by the University of Nevada Seismic Network.
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Chapter 1

Introduction

Seismic surface waves propagate along the air-solid interface of the Earth. Because the sensitivity
kernels of surface waves is frequency dependent, longer wavelength surface waves tend to possess
higher group and phase velocity due to the general increase of shear wave velocity with depth.
By quantifying the propagation velocities of band limited surface waves, it is possible to gain an
estimate of average shear-wave velocity structure of the Earth as a function of depth.

To estimate the dispersion of surface waves using only a single seismic station, one typically
applies a series of narrow-band filters to a surface wave seismogram. The resulting suite of fil-
tered seismograms are then enveloped, normalized and plotted as a function of time and frequency
(Figure 1). By knowing the distance between the seismic source and the observing station, the
resulting dispersion curve is transformed into slowness as a function of frequency (or period).

The maximum power of the surface wave at a given point in time and frequency will define
the group velocity. However, this measurement gives no quantifiable estimation of uncertainty.
To remedy this, I developed and describe a new method to estimate uncertainty of single-station
dispersion curves which translate directly to uncertainties in the estimates of group- and phase-
velocity of the surface waves. The method uses a class of orthogonal wavelet functions, known
as Slepian wavelets, to decompose the seismogram into a series of mutually orthogonal time-
frequency decompositions of a given signal. Each statistically independent wavelet transform can
then be used to form a (statically independent) dispersion curve. I then apply standard statistical
methods to estimate mean group- and phase-velocities of surface waves, as well as their uncer-
tainties. I show the utility of the method by applying it to synthetic data as well as a series of
surface wave cross correlograms collected by the University of Nevada Seismic network. Finally,
I demonstrate how the uncertainty can be applied to 1D seismic tomography.
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Figure 1.1. A synthetic example of using a bank of filters to es-
timate the dispersion of surface waves. The top panel on the left
show a synthetic, dispersive seismogram. The panels immediately
below that show the results of applying a series of narrow band
filters to the original seismogram. The red line shows the envelope
of the filtered waves, after normalizing. By plotting the normal-
ized envelope as a function of slowness and period, one obtains
an estimate of the group velocity of the wave, commonly called a
dispersion curve (the colored panel on the right). In this case, the
small red dots indicate the maximum power of the envelop as a
function of slowness, where the slowness is a function of time and
source/station distance.
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Chapter 2

Multiwavelets

2.1 Background

Wavelets have been independently introduced in various fields of study since the 1960s (Daubechies,
1992) and first used in geophysics by Morlet et al. (1992). In seismology, wavelet techniques have
been applied to array processing (Bear and Palvis, 1997, 1999; Bear et al., 1999), spectral esti-
mation (Park et al., 1987), polarization analysis (Lilly and Park, 1995), and seismic gradiometry
(Poppeliers, 2010, 2011), among other things. In the context of analyzing surface waves, the
wavelet transform is a natural choice for time-frequency decomposition, as it optimizes the trade-
off between time and frequency resolution. Furthermore, the wavelet transform provides virtually
the same information as the more conventional filter-bank method for analyzing surface waves
(e.g. Dziewonski et al., 1969). To see this, consider using a series of narrow-band filters on a
seismogram s(t) to isolate the signal’s frequency-dependent components:

Ŝ(t, fc) =
∫

∞

−∞

H(t, fc±∆ f )s(t− τ)dτ, (2.1)

where t is time and H(t, fc±∆ f ) is a filter with center frequency fc and a bandwidth of ±∆ f .
Applying equation 2.1 results in a series of band-limited seismograms, Ŝ(t, fc) each with frequency
range of fc±∆ f . To highlight the group velocity of dispersive surface waves, the envelope of
each filtered and normalized seismogram of Ŝ(t, fc) is taken and plotted as a function of center
frequency. Given the starting time of the seismic source and the distance between the source and
the observation point, the group velocity of a particular frequency-limited surface wave can be
estimated (Figure 1).

The wavelet transform of a signal is given as

W [s(u,C)] =
∫

∞

−∞

Φ(u,C)s(t−u)du (2.2)

where Φ is a real- or complex-valued wavelet function with scale length C and position u. The
scale C relates to center frequency and the position u relates to time. To apply Equation 2.2 a
wavelet function with scale C is simply convolved with the signal. By re-applying equation 2.2
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for a range of wavelet scales, a series of narrow-band decomposition of signal s(t) is produced.
The similarity of the wavelet transform to the filter bank shown in equation 2.1 is apparent: the
band-limited wavelet functions Φ(u,C) act as narrow band filters. Figure 2.2 a direct comparison
between the two methods: a conventional filter bank versus a wavelet transform. The filter bank
method was implemented using a Gaussian filter and the wavelet transform used the first Slepian
wavelet (see below for a description of Slepian wavelets). Note that for both cases the transforms
were normalized and enveloped for the display.

Figure 2.1. The similarity between a conventional filter bank
method of decomposing a dispersive seismogram and the multi-
wavelet transform. The panel on the left shows the result of a
Gaussian filter bank method to estimate the dispersion curve for a
cross correlelogram between stations GMN and GWY of the Uni-
versity of Nevada Seismic Network. The right panel shows the
result of decomposing the same cross correlogram with a wavelet
transform. In both panels, after the signal was decomposed into its
constituent time-frequency coefficients, the signal was enveloped
and normalized. The small red crosses identify the maximum am-
plitude of a given slowness-period location, and corresponds to the
resolved dispersion curve.

The wavelet function Φ(u,C) can be of any functional form, so long as it possesses three
mathematical criteria:

1. A wavelet must have finite energy:

E =
∫ +∞

−∞

|Φ(t)|2dt < ∞ (2.3)

where E is energy.
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2. The wavelet must have zero mean. Therefore if the Fourier transform of Φ(t) is

Φ̂( f ) =
∫ +∞

−∞

Φ(t)e−i2π f tdt (2.4)

then

Φ̂(0) = 0. (2.5)

3. For complex wavelets, the Fourier transform of Φ(t) must be real and vanish for negative
frequencies.

2.2 Slepian wavelets and the multiwavelet transform

The criteria described by items 2.3-2.5 allow significant freedom in choosing the form of Φ(t).
Although each specific type of wavelet will give slightly different results, they all will produce
approximately similar time-frequency decompositions (which is not at all alarming: a similar phe-
nomenon occurs for the filter bank method, depending on the form and bandwidth of the filter
used). These differences can be explained by the complex spectrum of the given wavelet type.
Regardless, for the work here, I use Slepian wavelets, which are a family of mutually orthogo-
nal, real-valued, even-odd functions that are time-frequency optimized (Slepian, 1983; Thompson,
1982). For a given scale, the suite of wavelet pairs have the same center frequency and band-
width as all the other wavelet pairs (e.g. figure 1 of Bear and Pavlis, 1997), although each wavelet
pair emphasizes a different portion of the spectrum within a given frequency range. Because each
wavelet pair is orthogonal to all other wavelet pairs, constructing a series of wavelet decomposi-
tions of a signal will result in statistically independent measurements of a signal’s time-frequency
structure (Bear and Pavlis, 1997; see Figure 2.2 of this report).

Lilly and Park (1995) developed a method of constructing Slepian wavelets to be used for the
multiwavelet transform. The wavelets are real-valued, discrete time series Φm with M samples and
sampling rate of ∆t. The wavelet pairs are designed to concentrate energy within a given frequency
band fc and bandwidth 2 fw, where fw ≤ fc.

Slepian wavelets real valued and thus the energy in the frequency domain appears in both
the positive and negative frequencies. Therefore, any frequency band of interest is defined by
| f ± fc| ≤ fw. The fraction of the total energy contained within this frequency interval is

λ =

∫ +( fc+ fw)

−( fc+ fw)
|W ( f )|2d f −

∫ +( fc− fw)

−( fc− fw)
|W ( f )|2d f∫ +(1/2∆t)

−(1/2∆t)
|W ( f )|2d f

(2.6)
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where

W ( f ) = ∆t
R

∑
m=−P+1

wme−i2π f m∆t (2.7)

is the discrete Fourier transform of the wavelet wm of length M, P is the closest integer ≥ M/2,
R is the closet integer ≤ M/2, and i =

√
−1 6= i. They are calculated by solving the eigenvalue

problem

AΦ =−λΦ (2.8)

where

Amn =
sin[2π( fc + fw)∆t(m−n)]

π(m−n)
− sin[2π( fc− fw)∆t(m−n)]

π(m−n)
(2.9)

and solving for Φ (Lilly and Park, 1995; Bear and Pavlis, 1997). Solving equation 2.8 yields
N orthogonal solutions of eigenvectors Φ{k} and associated eigenvectors λk, k = 1,2, ...N. The
wavelets are formed by sorting the eigenvalues (and their associated eigenvectors) from greatest to
least magnitude and then normalized to unity.

For a given scale, the center frequency of the wavelets are controlled by the parameter time-
bandwidth product p, where

p = fwM∆t. (2.10)

Similarly, the bandwidth is controlled by the parameter time-bandcenter product pc

pc = fcM∆t. (2.11)

In practice, the parameters p and pc are held fixed and the wavelets’ center frequency is varied by
changing the scale, or time length, M of the wavelet.

The wavelets Φ{k} occur as even-odd pairs, and the wavelets within a given pair are π/2 radians
out of phase. Therefore, the wavelets in each pair can be combined into a complex function

Φ
{k}(t,C) = Φ

{k}
e (t,C)+ iΦ{k}o (t,C) (2.12)

where C is the scale of the wavelet, Φ
{k}
e (t,C) is the k-th even wavelet, and Φ

{k}
o (t) is the k-th

odd wavelet. Finally, the complex function Φ{k}(t,C) can be used as the integrand of the general
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Figure 2.2. Ten Slepian wavelets as calculated from equation 2.8
in time (left panel) and their frequency power spectra (right panel).
Figure is from Bear and Pavlis (1997).
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p=3.5,	pc=7.0p=2.5,	pc=3.5

Figure 2.3. An illustration of how the time-bandwidth and time-
bandcenter products alter the spectral content of the wavelets. In
all the wavelets shown here, the number of samples is identical. In
the left half of the figure, the lower values of both p and pc create
wavelets k = 1,2, ...,6 that have a lower frequency than those in the
right half of the figure. Although the center frequency can also be
adjusted by appropriately changing the wavelet’s scale, note that
changing p and/or pc can also alter which portions of the spectrum
are emphasized.
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wavelet transform (equation 2.2) to yield the multiwavelet transform:

W {k}[s(t, f )] = (2.13)

=
∫ t+T/2

t−T/2
s(t− τ)Φ{k}(t,C)dτ

=
∫ t+T/2

t−T/2
s(t− τ)Φ

{k}
e (t,C)dτ + i

∫ t+T/2

t−T/2
s(t− τ)Φ

{k}
o (t,C)dτ

where there are k complex-valued wavelet transforms of the signal s(t).

There are two important points regarding the use of equation 2.13 for surface wave analysis.
First, as argued in equation 2.1, the wavelet, and thus multiwavelet, transform decomposes the data
in a similar way as the more conventional filter bank. This allows the user to estimate the group
velocity of surface waves as a function of frequency. Secondly, because the k wavelet pairs in
equation 2.13 are mutually orthogonal, the resulting transforms are also mutually orthogonal (and
thus statistically independent). Therefore, for a population of dispersion estimates corresponding
to k = 1,2,3, ...N wavelets, standard statistical methods can be employed to obtain estimates of
uncertainty. The subsequent uncertainties of group and phase velocities can then be used to place
uncertainty bounds on, for example, tomographically estimated subsurface seismic velocities.
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Chapter 3

Analysis and Application

To demonstrate the efficacy of the method, I apply the multiwavelet transform to estimate the
dispersion curves of selected data sets, and invert the dispersion relations to estimate 1D velocity
profiles. My approach is not to present a detailed tomographic analysis of a specific field area
but rather to demonstrate the multiwavelet method as applied to 1D surface wave tomography. As
such, I first apply the method to a synthetic waveform, where we know what the answer is (in terms
of the one-dimensional shear wave velocity profile), and then to two cross-correlograms collected
by the University of Nevada Seismic Network.

3.1 General Analysis Procedure

The goal of the analysis is to produce a model of subsurface shear wave velocity with uncertainty
estimates. The analysis includes several steps, where judgements must be made at each step re-
garding processing/analysis parameters. As such, any one step can be repeated as necessary to
improve the results, which is fundamentally a subjective judgement of the analyst.

Prior to analysis, it is useful to determine, qualitatively, whether the seismogram is actually
dispersive. As such, the focus should be on the low frequency surface wave arrivals. Because the
data will be filtered with a sequence of narrow-band filters, I find that the signal-to-noise ratio does
not need to be necessarily high, as the filters will eliminate much of the high frequency noise. I find
that it’s much more important for the analysis that the data actually contain surface wave arrivals
rather than having a high SNR. Assuming that the data is appropriate for analysis, the method
proceeds as follows (see Figure 3.1 also):

1. Construct a series of analyzing wavelets (equations 2.8-2.12) and convolve them with the
data.

2. Take the absolute value of each complex-valued wavelet transform.

3. Normalize each transform and for each period, identify the highest magnitude. The disper-
sion curve is formed by ‘connecting the dots’ for each identified slowness-period pair. Each
wavelet pair will yield in a dispersion curve.

17



(a) Note that the multiwavelet transform yields the time-frequency decomposition of a
given signal. The time of a given (narrow band) arrival can be used to estimate the
slowness if the source-station distance is known: u = t/d where u is slowness, t is the
time of the given narrow-band arrival, and d is the station-source distance.

(b) The dispersion curve should ‘look smooth’. In other words, the relative change between
slowness-period points on a given wavelet transform should be fairly small. In the
event that there is a rapid change in the dispersion curve from one point to the next, the
offending point(s) should likely be excluded from further analysis.

4. For K wavelet pairs, there will be K dispersion curves. Therefore for each period, there will
be a population of slowness estimates. Standard statistical methods can be applied at this
point to calculate, for example, the mean and standard deviation of the seismogram at each
period analyzed.

5. For my analysis, I compute the mean plus/minus one standard deviation for each period. I
use this information to construct three separate dispersion curves: the mean velocity, the
low-velocity, and the high-velocity dispersion curves.

(a) Each dispersion curve is the group velocity for a given seismogram. I also estimate
the three corresponding phase velocity curves using the Phase-matched filter method
(Appendix 1).

6. For each group/phase velocity curve, I estimate the 1D velocity using the method outlined in
Herrmann and Ammon (2004) (sections 3-1 to 3-35) as implemented in their freely available
software package Computer Programs in Seismology.

7. The resulting 1D velocity profile computed from each group/phase velocity pair can then
be plotted on top of one another, yielding a 1D velocity profile that shows the mean plus-
or-minus the uncertainty. In this case, the uncertainty in the 1D shear wave velocity is
determined by inverting the low- and high-velocity dispersion curves in bullet number 5.

3.2 Synthetic Tests

The first test is designed to demonstrate the efficacy of the method for a known model. Specif-
ically, I constructed a hypothetical crust/mantle model and numerically propagate an earthquake
seismogram through it. The model is constructed to mimic typical crust and mantle seismic prop-
erties. We use the freely available software package Specfem3D to model the wave propagation
produced by a explosive source located at [x0,y0,z0] = [150,0,0]km and record the seismogram on
a vertical-component station located at [x,y,z] = [650,0,0]km. The model size is 800 kilometers
on a side horizontally, and extends to a depth of 400 km. The resulting vertical component seismo-
gram shows a well-developed dispersion curve (Figure 3.2). We optimized the synthetic seismic
source for Rayleigh wave generation by simulating it as a single, downward pointing vector source
acting at the surface of the model.

18
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K=2

K=3

K=4

statistics

Figure 3.1. An illustration of the steps used to produce a dis-
persion curve for a single seismogram. The left panel shows the
raw cross correlogram collected from stations GMN and GWY of
the University of Nevada Seismic Network. In this example, four
complex wavelet pairs (pc = 3.5, p = 7.0) are applied to the data.
The absolute value of the resulting transforms were then normal-
ized (middle panel), and the maximum power for each frequency
is then selected (small red crosses), which form the dispersion
curve for that given transform. The group velocity is obtained by
knowing the station pair separation and the lag time of the given
narrow-band surface wave arrival. The right panel shows the re-
sult of using the suite of dispersion curves to compute the mean
(heavy black line) and plus-minus one standard deviation (thin
black lines). Note that in this example we used ten wavelet pairs
to compute the statistics, although only the first four are shown.
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Figure 3.2. The model (left panel) and the resulting seismogram
(right panel) computed using Specfem3D. The model is 800km
in both horizontal directions, and 400km deep. The color cor-
responds to the shear wave velocity. The numerical source time
function was located at [x0,y0,z0] = [150,0,0]km and optimized
for Rayleigh wave generation, resulting in a (displacement) seis-
mogram that shows clear evidence of surface wave dispersion.
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I implement the analysis according to the steps outlined Section 3.1. The bandwidth of the
analysis is 35-100 seconds, with sixty evenly space period intervals, where pc = 7.0 and p = 3.5.
To obtain the group velocity, I computed the wavelet transform of the seismogram, and convert
the time-period wavelet transform to slowness-period by scaling the time axis to slowness u = t/d,
where d is the distance between the source and receiver and t is the time. Then for each period
in the wavelet transform, I compute power by squaring the magnitude of the complex transform.
Note that the resulting transform is similar to computing the envelope of a real function via the
Hilbert transform. I then normalize the magnitude transform such that the maximum amplitude
for each frequency is one. The maximum envelope amplitude is chosen as the group slowness for
that particular period. This procedure is repeated for all of the wavelet transforms. This produces
a population of ten estimates of group slowness for each period for the given station pair. I then
compute the mean and standard error of the slowness for each period. To compute the phase
slowness, I used the phase-matched filter method outlined by Herrin and Goforth (1977).

p=3.5,	pc=7.0

Figure 3.3. Analysis and results using synthetic data. Using the
multiwavelet method on the synthetic data (Figure 3.2) resulted
in the dispersion curve shown in the upper left hand panel. The
resulting group and phase velocities are shown in the upper right
hand panel. The results of inverting the group and phase velocities
is shown in the bottom panel. See the text for the discussion of the
results

.

The results of the multiwavelet analysis of the synthetic seismogram is shown in Figure 3.2.
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The observed group velocity curve shows the expected dispersion, however, appears rather vari-
able. Also, we observe that the velocity actually decreases starting at a period of 65s to 80s,
which is not an expected result. However, the phase velocity estimates increase monotonically
with increasing period. Regardless, the estimated 1D shear wave velocity profile shows increasing
velocity with depth. For this test, I used a five layer starting velocity model, which corresponded
exactly to the actual model. The inversion underestimated the velocity of the first layer as well as
the mantle layer, but over estimated the velocities of the middle, crustal layers. Although the fit
doesn’t appear good, the point of the analysis was not to perfectly fit the data. Rather, it was to
demonstrate that we can propagate the uncertainty in the dispersion curve estimates through the
tomographic inversion. Whether the tomographic inversion can fit the data is a topic that is outside
the scope of this report.

3.3 Tests with Field Data

To demonstrate the efficacy of the method, I apply it to two high-quality cross-correlograms from
the University of Nevada Seismic Network. The cross-correlograms are composed of the station
pairs NCF-GWY and AL5S-GWY, and they share a similar ray path. I chose these two station
pairs for two reasons. First, they are the highest quality cross-correlograms from this network over
the period of 1-16s. Second, the “ray paths” between these station pairs are similar. Stations NCF
and AL5S are located approximately ten kilometers apart, and the path from these two stations to
GWY is across a sedimentary basin, and a similar distance in both cases (Figure 3.3)

3.3.1 Surface Wave Dispersion Estimates

The data are processed as described in Section 3.1 and the results are shown for both station pairs
(Figures 3.3.2 and 3.3.2). For both cross-correlograms, the dispersion curves show a statistically
significant (according to the uncertainty) decrease in velocity in the range of approximately seven
to ten seconds. This is an atypical behavior for surface wave group velocities, and suggests that
there is a prominent low-velocity zone at depth. Although the computed phase velocity relation
does not show this decrease in phase velocity with increasing period, its apparent on the estimated
dispersion curves.

3.3.2 Surface Wave Tomography

I use the surface wave dispersion curves as well as the uncertainty estimates as input data for
1D surface wave tomography. The inversion algorithm was originally developed by Herrmann
and Ammon (2004). To propagate the uncertainty into the tomography inversion, I take the same
approach as with the synthetic case: the inversion is performed three times for each dataset: once
for the mean dispersion curve and once each for the mean plus/minus the standard deviation. The
results of the inversions are shown in Figures 3.3.2 and 3.3.2.
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20km

Figure 3.4. A GoogleEarth image of the station pairs used to test
the method. The two station pairs (NCF-GWY and AL5S-GWY)
are part of the University of Nevada, Reno seismic network. The
ray paths of each station pair cross correlogram are shown by the
red and yellow line. Note that the color of the outline box on the
cross correlograms corresponds to the color of the indicated ray
path.

.

23



The increase in slowness apparent on the dispersion curves occurs for both station pairs over
the passband of 7-9 seconds. Regardless of the tomographic results, this fundamental observation
implies that there is a low velocity zone in the shallow crust. The rule of thumb is that surface waves
are most influenced (in terms of group velocity) at a depth corresponding to approximately 0.6
times their wavelength. If we assume a shear wave speed of upper crustal rocks to be 2.5km/sec,
then a Rayleigh with period seven seconds has a wavelength of 17km. Therefore this Rayleigh
wave is most sensitive to the the shear wave speed at a depth of 10km. In both of my examples,
the low velocity zone is topographically estimated to occur at a depth of approximately 8km. The
discrepancy between 8 and 10 km is not terribly significant in 1D surface wave tomography, and
when uncertainty is taken into account, the inversion results agree with my “back of the envelope”
calculations presented in this paragraph.
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Figure 3.5. Group- and Phase-velocity estimation for station pair
GWY - AL5S. The analysis was performed using ten wavelet pairs
where p=3.5 and pc=7.0 A) The mean group slowness is shown
as a heavy black line where the thin red lines show ± one stan-
dard deviation. The small red crosses show the estimated slowness
for the first wavelet pair, which also corresponds to the colormap.
B) The group (blue) and phase (red) velocity. The group veloc-
ity is simply taken as in inverse slowness from panel A, where the
small blue dots correspond to± one standard deviation. The phase
velocity is estimated using the phase-matched filtering technique
that’s summarized in the appendix. The uncertainty in the phase
velocity is indicated as small red dots. To compute the uncertainty
in the phase velocity, the phase-matched filter is computed for each
of the three velocity relations: the mean velocity and the mean ve-
locity ± the standard deviation. C) The results of a 1D surface
wave inversion. The inversion used both the group and phase ve-
locity curves shown in panel B. The starting model was composed
of twelve layers, each being 1km thick, and is indicated by the
black dashed line. The inversion was run three times: once for
the mean group and phase, and once each for the mean group and
phase velocities ± one standard deviation. The mean estimated
shear wave velocity is shown as the heavy blue line and the uncer-
tainty is indicated by the thin red lines.

25



Figure 3.6. Same as Figure 3.3.2 but for station pair GWY-NCF.

.
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Chapter 4

Conclusions

In this report, I describe a new single-station method to estimate the dispersion of seismic surface
waves. The method is similar to the conventional filter-bank approach in which a series of narrow
band filters is used to isolate specific time-frequency portions of the seismogram. I show that the
wavelet transform provides a similar decomposition of a seismogram, but one that is optimized in
terms of time-frequency tradeoff. By using the multiwavelet transform, I show that the seismogram
can be decomposed into a suite of time-frequency estimates, which can be treated as a statistical
population. In the case here, I use the multiwavelet transform to decompose the wave field into
a series of wavelet coefficients that are localized in time and frequency. Each time-frequency de-
composition of the wavefield is used to estimate a statistically independent estimate of the surface
wave dispersion curve. Because this method yields a suite of dispersion estimates for a given
seismogram, standard statistical methods can be used to estimate uncertainty.

I test the method on synthetic data as well as two cross-correlograms recorded by the University
of Nevada Reno seismic network. In each case, I estimate the surface wave dispersion as well as
the uncertainty and use this as input into a standard surface wave tomography program. The final
result is an estimate of the 1D velocity structure as well as their uncertainties. I did not attempt
to perfectly resolve the shear wave velocity structure for either the synthetic case or the two data
examples. Rather, I was using 1D surface wave tomography as a demonstration of one possible
application, and method, of this type of analysis to estimate Earth structure. I fully recognize the
low resolution inherent in 1D surface wave tomography as well as the degree to which it can be
“tuned” and/or regularized to favor certain Earth models based on a-priori information.
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Appendix A

Phase Match Filter to Estimate Phase
Velocity

To obtain an estimate of the phase velocity, I use the method of Herrin and Goforth (1977) as-
suming group velocities consistent with the PREM continental velocity model. The basic relation
is the the (frequency dependent) group delay tgr(ω) and the Fourier phase angle of the signal are
related:

tgr(ω) =
∂θ(ω)

∂ω
, (A.1)

where ω is the angular frequency and ω is the Fourier phase. To solve for phase, we separate the
variables and integrate:

θ(ω) =
∫

ωN

0
tgr(ω)dω (A.2)

where ωN is the Nyquist frequency. Discretizing equation A.2 yields

tint( fi) =
fN

∑
i= f1

tgr( fi)∆ f , (A.3)

where fi is discrete frequency and tint( fi) is related to Fourier phase by

θ( f ) = 2π(tint( f )− f (t0) (A.4)

where t0 is the time of the first sample in the seismogram. Note that if the starting time of the
seismogram is zero, then θ( f ) = 2π(tint( f )) which just relates angular frequency to temporal
frequency. To obtain the phase velocity, I use the relation

c( f ) =
∆ f

tint( f )
. (A.5)
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The term θ( f ) can be used to validate the estimated phase velocities by using it to construct a
phase-matched filter (PMF). If the phase matched filter b( f ) = S( f )e−iθ( f ), where S( f ) is the am-
plitude spectrum of the original seismogram, accurately represents the actual surface wave disper-
sion along a give source-station path, the cross correlating the PMF with the original seismogram
should result in a symmetric, band-limited pulse centered at zero lag at all frequencies (Figure ??)

Figure A.1. Applying a phase matched filter to the original cor-
relogram used to construct the group velocity dispersion curve in
figure one results in a zero-lag cross correlation at all frequencies.
Note that in this case, the PMF does not perfectly remove the dis-
persion for the smaller periods. The bottom panel shows the group
velocities extracted from Figure ?? as well as the estimated phase
velocities based on equations A.3-A.5.
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